Naming organic compounds with functional groups and writing semi-structural formulae. Lesson 1b

Semi-structural formulae represent an unambiguous way of writing the structure of an organic molecule in a simple short-hand way.

For example, consider the molecule of decane shown on the right.

The semi-structural formula shows the group of atoms and the order in which they are attached.

Brackets are used in two ways, they can reduce the amount of work in writing the formula, as in the example given, and to remove ambiguity from a structure. Brackets can also signify a group of atoms that come off the preceding carbon.

Take the example of 3,3-dimethyl pentane, shown on the right. It can be written as $CH_3CH_2C(CH_3)_2CH_2CH_3$

3-bromo-2,2,3-trimethylpentane can be written as $(CH_3)_3CCBr(CH_3)CH_2CH_3$ or the less condensed version of $CH_3C(CH_3)_2CBr(CH_3)$. Since there is no ambiguity and both formulae will lead to drawing the exact same molecule both are applicable.

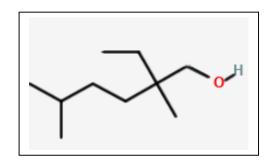
$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3

Some pints to note when writing condensed or semi-structural formulae.

Aledhydes are written as CHO as opposed to COH which implies a hydroxyl group.

Esters are written as R'COOR and not as the appear R'OCOR If it's a methanoate ester such as ethyl methanoate then it must be written so that it is unambiguous between an acid and an ester.

eg. Writing ethyl mathanoate in condensed form it is easy to confuse it with porpanoic acid. CH_3CH_2COOH so write it so that the hydrogen appears first $HCOOCH_2CH_3$


A carboxylic acid is shown as R'COOH. Eg. Propanoic acid CH₃CH₂COOH

Alcohols have an OH. Eg. Propan-2-ol is written as CH₃CH(OH)CH₃ or propan-1-ol is CH₃CH₂CH₂OH A ketone is written as R'COR An ether is shown as R'OR

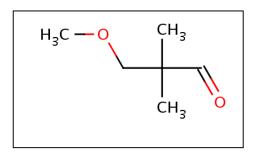
 Name the following and write the condensed or semi-structural formula for each of the molecules shown.

5,5-dimethylhexanoic acid (CH₃)₃C(CH₂)₃ COOH or CH₃C(CH₃)₂CH₂CH₂CH₂COOH

2-ethyl-2,5-dimethylhexan-1-ol CH(CH₃)₂CH₂CH₂C(CH₂CH₃)(CH₃)CH₂OH

2) Write the condensed formulae of the following molecules

CH₃CH₂CH₂COOCH₂CH₃

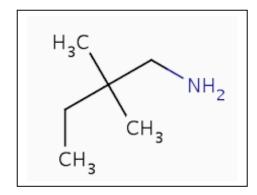

CH₃COCH₂CH₃

$$H_3C$$
 CH_3

CH₃CH2CHO (the CHO implies an aldehyde)

CH₃C(CH₃)₂CHO (CHO indicates an aldhyde)

CH₃OCH₂C(CH₃)₂CHO


- 3) Complete the following
 - a) Name 2,2-methylbutan-1-amine

Condensed formula $CH_3CH_2C(CH_3)_2CH_2NH_2$ Brackets (around the NH_2) are not necessary as it is not ambiguous, the terminal NH_2 must be attached

b) Name 2-methylbutan-1,3-diol

Condensed formula $CH_3CH(OH)CH(CH_3)CH_2OH$ Brackets (around the OH) are not necessary as it is not ambiguous, the terminal OH must be attached to the end CH_2

c) Name the compound with the condensed formula (CH₃CH₂)₂CH(CH₂)₄CH₂OH

6-ethyloctan-1-ol